Super-Thin Solar Cell

thincell

Solar energy will very likely be the main source of power as the world continues to strive toward greater sustainability. But it won’t be just the large panels that get the job done. In fact, I’m willing to bet that ultra thin and flexible solar cells that can be attached to virtually any surface will be the future. Which is why breakthroughs in this area are so important. And now a team of South Korea scientists has successfully created a super thin solar cell, which is so flexible it can be wrapped around a pencil without causing damage or too much strain to it.

The solar PV cell that they created is one micrometer thick (which is even thinner than a human hair) and it is this thinness that gives it the extreme flexibility it boasts of. It is made from a semiconductor gallium arsenide, which is stamped onto a flexible metal substrate. No adhesive is used in this process, instead it is fused with the electrode on the substrate with a cold welding process that involves applying pressure at 170 degrees Celsius. And the metal layer also acts as a reflector that directs light back onto the cell.

Testing the limits of the cell’s flexibility they found that it can be bent around an object with a radius of 1.4 millimeters. Despite their thinness, the solar cells have an energy conversion efficiency comparable to thicker ones. They also exhibited only one quarter of the strain from the bending compared to a 3.5 micrometers thick cell.

The real-world application of this type of cell would be far-ranging. It could be used on smartphones, fabric, and smart glasses, while it could also easily be integrated into self-powered devices, such as, for example, environmental sensors located in hard to reach places.

There is no definitive word yet on when and if they plan to bring this cell to market.

Super-Thin Solar Cell

thincell

Solar energy will very likely be the main source of power as the world continues to strive toward greater sustainability. But it won’t be just the large panels that get the job done. In fact, I’m willing to bet that ultra thin and flexible solar cells that can be attached to virtually any surface will be the future. Which is why breakthroughs in this area are so important. And now a team of South Korea scientists has successfully created a super thin solar cell, which is so flexible it can be wrapped around a pencil without causing damage or too much strain to it.

The solar PV cell that they created is one micrometer thick (which is even thinner than a human hair) and it is this thinness that gives it the extreme flexibility it boasts of. It is made from a semiconductor gallium arsenide, which is stamped onto a flexible metal substrate. No adhesive is used in this process, instead it is fused with the electrode on the substrate with a cold welding process that involves applying pressure at 170 degrees Celsius. And the metal layer also acts as a reflector that directs light back onto the cell.

Testing the limits of the cell’s flexibility they found that it can be bent around an object with a radius of 1.4 millimeters. Despite their thinness, the solar cells have an energy conversion efficiency comparable to thicker ones. They also exhibited only one quarter of the strain from the bending compared to a 3.5 micrometers thick cell.

The real-world application of this type of cell would be far-ranging. It could be used on smartphones, fabric, and smart glasses, while it could also easily be integrated into self-powered devices, such as, for example, environmental sensors located in hard to reach places.

There is no definitive word yet on when and if they plan to bring this cell to market.

Google Making Breakthroughs in Finding Better Energy Storage Solutions

Alphabet, the parent company of Google, has a so-called X division, which works on highly experimental projects. But a lot of these projects could prove very beneficial in solving some of the world’s biggest problems. This division created Google’s self-driving car, as well as Project Loon, which involves high altitude balloons carrying Wi-Fi. And now it is looking for more efficient and effective ways of high-density energy storage.

This project is called Malta and the energy storage solution they came up with features molten salt storage, which X has paired with cold storage using antifreeze. Molten salt energy storage has been looked at before as a viable solution for energy storage, and paired with antifreeze, it can store energy for days, possibly weeks. As such, it would be perfect for storing renewable energy, which is simply getting discarded in lots of places at the moment.

Reports show that China discards 17 percent of energy produced by wind per year, while Germany tosses away 4 percent. And this year alone, California has had to discard 300,000 megawatt hours of excess electricity from the grid, all of which came from renewable sources. If there was a way to store that energy, it would be enough to power thousands of homes.

The dual thermal energy storage tech that X has come up with can be used to store high densities of energy, while it will also be a lot less expensive than existing solutions. It is also very scalable, since all it would take to expand it would be adding more salt and cold liquid tanks to the system. Also, the salt used can be charged and re-charged several times over its lifespan.

They’ve already built a small prototype of this energy storage system in Silicon Valley. They’re now looking for partners, such as Siemens and GE, to develop a commercial prototype, which can be tested on the grid.

Turning Food Leftovers Into Energy Fast

A team of researchers at Cornell University has discovered a process of turning leftover food into energy much faster than already existing methods. It is a two-step process and is very efficient, since it captures virtually all the available energy.

Other methods work on the basis of anaerobic digestion with bacteria slowly chipping away at the organic matter and producing methane, which is then used for fuel. This new method that the researchers discovered works on the basis of the process of hydrothermal liquefaction. Basically, the food leftovers are first pressure-cooked, which results in a sort of bio-oil. This bio-oil is then refined into biofuel, while all that remains of the original food leftovers is just very watery liquid.

The next step is to feed this liquid into an anaerobic digester, which converts it into methane in a couple of days. Two sources of usable energy are produced via this method, one for generating electricity, the other heat, while none of the original food leftovers go to waste. When using just anaerobic digestion, it can take weeks for the food waste to turn into energy.

Also, the liquefied product that is leftover after the hydrothermal processing in this new method is better for the anaerobic digestion part of the process. Combining the two makes the overall process both more efficient as well as quicker. It takes mere minutes to achieve hydrothermal liquefaction and just a few days for the anaerobic digestion.

Current statistics show that about one-third of the world’s food is wasted, while US landfills are primarily filled with food waste. Needless to say, one of the priorities should be to keep food from becoming waste. But it is also important to find efficient ways of recycling food waste into something useful. A process such as this one, which leaves virtually no waste while producing clean energy would greatly reduce our carbon footprint and lessen our dependence on fossil fuels.

Tesla Announces Sleek New Solar Panels

Late last year, Tesla unveiled a range of solar panels that were actually roof tiles as well. The price was prohibitive though, since there was no way to install them on an existing roof without some expensive and time-consuming renovations. But this is no longer the case.
The company has now added a new product to their line-up: solar panels that are so sleek and thin that they will make any roof look good.

The new Tesla solar panels are to be made by Gigafactory 2, a Tesla factory located in Buffalo, New York. They will be exclusive to Tesla, and are intended to be integrated with their Powerwall energy storage units to provide an uninterrupted 24-hour a day supply of clean energy.

The mounting hardware of these new 325-watt panels is hidden, while the integrated front skirt allows them to blend with the roof on which they are installed almost seamlessly. According to Tesla, these panels not only meet but also exceed industry standards when it comes to durability and lifespan, though no data was provided to support this. According to Elecktrek, other 325-watt panels that Panasonic currently produces have an efficiency rate of 21.67%. The new Tesla panels probably have a similar efficiency, or perhaps an even slightly better one.

The company will start producing these new panels in the summer of 2017. They will be used exclusively for all future residential solar installations by the company, as well as for replacement of any other existing third party solar panel installations. No word on pricing yet, though those interested can also get a custom quote for their home via the Tesla website.