Pre-assembled mounting structures speed site installation by 35 percent

OMCO Solar site installation

By choosing a mounting structure with a nationwide manufacturing footprint, fuel costs and shipping are greatly reduced when product originates from the most strategic geographic location.

Delivery is everything in solar development. Delivery on-time or even ahead of schedule signals reliability to investors and paves the way for more builds, especially those needed at an accelerated pace due to impending, seasonal weather conditions or site takeovers when the original racking partner could not deliver the job. The sooner the plant comes online, the quicker investors recoup capital and the power of solar proves positive revenue.

The proof is in the numbers as a recent time study shows construction using pre-assembled components, such as factory-direct Field-Fast by OMCO Solar, saves both time and money while still leveraging a bankable, high-quality racking system.

How to reduce every area of typical racking costs

Manufacturing: In the current age of high-velocity, precision manufacturing, selecting a mounting structure that’s OEM-direct saves significantly, but don’t just look for a brand with a manufacturing line, look for one with deep experience, solar know-how and proven bankability.

OMCO Solar is part of OMCO Roll-Form, a 60-year industry leader with coast to coast locations. Also, OMCO Solar is now the largest manufacturer of utility-scale solar mounting structures in the United States. With in-house design and engineering teams, OMCO can quickly solve any site-based requirements right on the factory floor to provide build customization whenever needed. Plus, a partner that runs their own factories significantly reduces lead-time for projects that need to get off the ground fast.

Materials: The current state of the industry has largely been negatively impacted by the tariffs, making solar projects cost more. That’s why it’s vital to select an OEM mounting partner with stable materials-sourcing relationships, ideally using steel that’s sourced nationally.

OMCO solar

OMCO Solar has been exclusively using U.S. steel for over 60 years and has priority supply relationships in place. With the highest materials handling and stocking standards in the industry, OMCO is a partner who can be relied upon for mounting structures for any size project large or small, no matter what the tariffs bring.

Mounting structure flexibility: There is nothing that slows the rate of install more than having to make cuts to adjust racking in the field. When racking doesn’t have the ability to account for undulating terrain, get ready for a long and laborious build schedule.

OMCO Solar has built all the adjustability an in-field team will ever need, right into their Field-Fast mounting structure. With pre-stamped slots allowing for connections at any grade, without any extra parts or cutting of the rack, sites can be erected at a rate of seven structures per hour (10 panels and 300 Watts between two posts), by a team of two installers.


Logistics and freight: Freight costs add up quickly. By choosing a mounting structure with a nationwide manufacturing footprint, fuel costs and shipping are greatly reduced when product originates from the most strategic geographic location.

OMCO Solar has manufacturing facilities from coast to coast, each with the latest equipment and full capabilities to output as many Field-Fast mounting structures as required. Plus, all locations can customize if needed, with high-velocity, precision manufacturing techniques guided by on-site solar design and engineering expertise.

Unloading and staging: Site unloading and staging time can tie-up manpower and eat valuable time from the construction schedule when parts go missing or racking components need to be assembled in the field for staging.

OMCO Solar

By choosing a mounting structure consisting of pre-assembled components, there is no need to waste excessive manpower on part staging. Each Field-Fast mounting structure is comprised of only seven bill of materials items, with zero pre-assembly required in the field. No other BoS product can claim that. Plus, all hardware comes to the site marked, presorted and associated with each racking setup. Also, most of the hardware is pre-threaded for simple tool consolidation and ease of construction.

Labor and safety: Team size and safety during construction factor large in final project cost. That’s why mounting systems that allow smaller in-field teams without overhead lifting or the use of heavy-lifting equipment give solar developers a cost-saving edge.

OMCO Solar racking assembly

The Field-Fast mounting system can be constructed 100% from ground-level for increased site safety. Construction requires no overhead-lifting or heavy equipment and only two installers are required for complete assembly. Time studies in 2018 rank Field-Fast with a labor efficiency of 85 percent.

Modules: Module changes happen. Sometimes they even happen late in construction. Many mounting structures have panel-specific requirements, making module changes a potentially risky and costly endeavor.

OMCO’s Field-Fast mounting system is compatible with any framed module. Plus, as an official First Solar Ecosystem partner, the Field-Fast mounting system is compatible with Series 6 modules. With Field-Fast, module compatibility presents zero financial risks for solar investors. Best of all, when it comes to pure module installation, two installers can ready 300,000 watts per hour via 100 panels.

Pre-assembly: The time pre-assembly saves on build schedules is exponential and echoes throughout the cost of an entire project. Pre-assembly saves money on transport and logistics, staging and, of course, final in-field construction. It even aids permitting as pre-assembly ensures proper racking builds.

OMCO Solar’s ISO-certified, Field-Fast mounting structure is entirely built from seven, pre-assembled components, expertly fitted and packaged in an OMCO factory and ready for projects nationwide from 500 kW builds to multi-MW projects.

Get ready to build

OMCO Solar continues to help developers attack the tariffs through their high bankability, with the factory-direct Field-Fast mounting system and years of worldwide solar construction expertise. To date, OMCO Solar has leveraged over 8 GW of utility-scale experience and 60 years of custom roll-form manufacturing skills to develop the best solar racking structure on the market.

Learn more about OMCO Solar and their factory-direct Field-Fast mounting system here.

Jen Degtjarewsky is a guest editor for OMCO Solar.

— Solar Builder magazine

Tracking Trackers: We look at what’s new with these seven solar trackers

What are you looking for in a tracker? Longer rows with fewer spans? A two-up bifacial module setup? A simple central drive configuration with reliable bearings? More self-powered options? There are a lot of trackers in the segment, and we wanted to highlight some of the cool, innovative features outside of the market share leaders that reduce costs, ease installation or improve reliability.



Three tracker styles to match every solar site

Arctech offers three tracker designs: The Arctracker Pro is its centralized tracker with push-pull design that is the best for flat land. The SkySmart is a single-row design with two modules in portrait that has fewer posts and is perfect for bifacial modules, and the SkyLine is a single-row design with one module in portrait.
Arctech makes the majority of its products with the support of two enormous factories, with a third on the way in 2019, to better control costs and quality.

Key hardware

  • All of Arctech’s trackers have its new D-shaped torque tube that adds stability and saves material.
  • Single-row trackers are powered from the string rather than from the batteries.
  • A beefy bearing was recently added that can handle a 20 percent N-S slope and stop the translation of weight.


“Most of what we are doing is ensuring interfaces to client’s SCADA systems,” says Guy Rong, president of Arctech Solar. “We have a number of alarms in the rare case something happens to the system. Beyond this we are building software to create more accuracy on a row-by-row basis. We will announce when this is available.”

Case study

A 172-MW project in Telangana, India, had three main challenges that were solved by the design of the Arctracker Pro.

Challenge 1: Rough terrain and uneven slope. Solution: Arctech took advantage of special linkage and different post lengths to offset land contour variations and, at the same time, keep the high density of PV modules in available land and maintain high energy yield. Moreover, tracker sizes were specially designed to make best use of corner areas of land.

Challenge 2: High wind. Solution: Arctech Solar reinforced the tracking system by adding 25 percent more dampers to ensure stability and reliability of general operation and avoid damages caused by strong wind.

Challenge 3: Installation within timeline. Solutions: Installing 172 MW at a single site within the timeline was a challenging task for the EPC. In India, it’s not always easy to find skilled man power in remote areas. To solve these issues, the Arctech engineering team collaborated with the EPC to finalize installation phases well before shipping. Posts were shipped first to make sure the civil work started early while Arctech’s project managers gave tutorials on demo tracker installation so that all teams could start work simultaneously.



Recently acquired by TrinaSolar, this international tracker has beefed up its design

Spain-based Nclave keeps on expanding. Founded 12 years ago by the Clavijo Family, it integrated with MFV in 2017. Nclave has installed over 2.5 GW worldwide. Earlier this year, the company teamed up with Trina Solar, a Chinese supplier of global solutions for the solar sector, to be a part of its TrinaPro utility-scale solution, which eventually led Trina to acquire a controlling interest in Nclave.


Nclave has developed and patented a module mounting design, the Nclave Clamp, that reduces assembly time of modules by more than 75 percent with as low as 50 manhours per MW. It also lessens the weight of the material by more than 30 percent. It includes UL-compliant integrated grounding features and has been load tested to UL and IEC standards.

Nclave separates the tracker assembly from the module assembly process to ease installation. The registered purlin allows the system to be pre-assembled on the tracker so modules can be installed with only a nut driver. Installers get rid of dedicated hardware for module installation (no more clips, bolts or rivets) as the U-bolt brackets secure module, purlin and clamp all together with just two nuts: a sandwich-like concept.


The Nclave tracker controller is part of smart PV solution TrinaPro. The tracker controller is connected with the inverter in order to boost energy yield production: the optimized matching among components and the “Edge Computing” algorithm integration of TrinaPro can improve system stability with higher power generation.
The controller is empowered with a smart O&M system on a cloud platform that analyzes and processes data to optimize the system’s operation model and ensure the system runs smoothly and efficiently.

Solar FlexRack

solar flexrack

We featured this in more detail right here.

Tough, reliable, and cost-competitive, Solar FlexRack introduces their new, advanced TDP 2.0 Solar Tracker for commercial and utility-scale ground mount solar installations. The TDP 2.0 Tracker’s new BalanceTrac design offers more modules per row (up to 90), a rotational range of up to 110° and is compatible with 1,000V and 1,500V crystalline and thin film modules. This solution allows for shorter piles and lower per-unit fixed costs for balance of system savings. The combination of complete project support services and this next-generation technology enables solar power plants to increase energy yield while significantly reducing project risks. The results are cost savings across your solar project budget.



Smartly designed structure offers slick wire management

Soltec, a manufacturer and supplier of single-axis solar trackers and related services, has installed its trackers all over the globe for more than a decade now, but the company says 2017 was its best year so far, showing over 200 percent revenue growth. The strategic move to the United States in 2015 has coincided with additional market share in 2017, amid market uncertainties and strong competition.


The DC Harness StringRunner wire management solution is a proprietary standardized component of Soltec’s SF7 tracker. It performs the functions of combining fused PV source circuits and cabling a homerun trunk circuit, all enclosed within the tracker torque tube, to a DC power switch for off-take. It eliminates the traditional fused combiner box and other cable management materials and controls the power output of eight trackers typically around 240 kW.

Soltec says the cost benefits come from the reduction of materials and related operations in manufacturing, power plant design, purchasing, supply and installation. The net cost benefit is a 30 to 35 percent reduction of installed first-cost compared to the traditional exposed installation of bundled copper wire circuits with a traditional combiner box. Installation labor is reduced by 75 percent thanks to less material and fewer manual operations including wire connections.

There are yield-gain benefits too with a reduction of IR cable losses, reliable low-resistance connections and factory dimensioned trunk cable sizing. The elimination of cable-management backside shading increases tracker compatibility with bifacial module technology.


Comparative tracker yield-gain elements are both standard and site-dependent. Principal to site-dependence is asymmetric backtracking control to modify tracking position in the case that terrain irregularities cause inter-row shading in morning and afternoon hours, a case that is avoidable on flat terrain.

Soltec’s TeamTrack asymmetric backtracking control solution achieves both yield-gain and cost reduction benefits in tracker technology, achieving up to 6 percent yield-gain over the alternative of standard tracking on irregular terrain, and enabling cost reduction of earth-grading on contours and steps. The TeamTrack differs from other backtracking solutions that incorporate an auxiliary PV module and feedback response mechanisms that can add cost and vulnerability by instead performing the task straightforward with programmed operation and robust tracker position control.

The TeamTrack control algorithm works with NREL sun position data versus programmed constants of local irregularities (that never change) to calculate and execute backtracking movements and avoid inter-row shading. TeamTrack is part of comprehensive tracker positioning control that includes sensing and response to cloud cover, snow cover, standing water level and wind regime.



New tracker product with self-locking mechanism now available

Although the U.S. arm of Schletter filed for bankruptcy, the Germany-based headquarters is still chugging along. At this year’s Intersolar Europe, Schletter Group presented its new tracking system.


The core feature of the new Schletter tracker is that it combines the stability of a fixed mounting system with the additional yields of a tracking system. This is achieved by the drive concept: While most other tracking systems use hydraulic dampers or similar supporting structures to mitigate the vibrations and torsional forces caused by the wind, this Schletter system features a drive system with a self-locking mechanism. Each post locks as soon as the row has stopped moving. This newly-developed and soon to be patented drive system fully eliminates vibrations over the entire row which can be caused by wind. Therefore the system, while at rest, has the properties and durability of a fixed mounting system and is designed to withstand wind speeds of up to 161 mph. It thus completely avoids the dangerous galloping effect.

The second feature that stands out is its efficiency, achieved through its large wing-span and ground cover ratio. Each row can be up to 393-ft long and is driven by one centrally located motor. At 13 ft in width, each row is wide enough to hold either two panels oriented vertically or four horizontally, thus up to 574 sq yds of solar array can be installed per row and motor. This allows operators to make optimal use of the available land and a ground cover ratio of more than 50 percent can be achieved.


The tracker has a rotational range of 60 degrees and is controlled through wireless technology, which completely obviates expensive wiring for both power supply and communication. The motor and the control systems are selfpowered by a dedicated PV panel in each row with a battery pack. To make O&M easier, mechanical connections between the rows have been deliberately avoided. This allows unhampered vehicle access between the rows, for instance during servicing and maintenance work.


gp joule

GP JOULE’s single-axis tracker passes 20-year reliability test

The PHLEGON single-axis tracker from GP JOULE Canada Corp. passed a series of accelerated life-cycle tests conducted by the Southern Alberta Institute of Technology (SAIT) in Calgary. The Institute’s Green Building Technology Lab and Demonstration Centre confirmed PHLEGON’s long-term reliability within a wide range of environmental conditions and proved its performance in extreme northern climates. SAIT’s Accelerated Life Test Report shows that GP JOULE’s active tracking technology provides proven results in the Northern Canadian and U.S. markets where fixed-tilt PV has been dominant.

SAIT cycled PHLEGON’s mechanical components continuously 7,305 times over a 19-day period to simulate two decades of functionality. PHLEGON initially underwent the tests without environmental factors, and then went through another round that simulated extreme conditions including grit, freezing rain and sleet. The test included a deep freeze below -20C, confirming sensitive components function under extreme temperatures. “Freeze-thaw” tests mimicked the effects of spring and fall on the tracker, flooding moving parts with water before immediately exposing them to below-zero temperatures. The actuator, responsible for controlling and rotating the solar panels, completed both the mechanical and environmental rounds of testing — essentially 40 years without failure.

“GP JOULE wanted SAIT to test two things. First, how the system will operate in Alberta’s climate and second, what the cost of operating and maintaining the PHLEGON over a 20-year lifespan will be,” says Tom Jackman, SAIT’s principal investigator. “Our testing protocol introduced freezing conditions that were not considered in their original test plan, resulting in substantial ice buildup and additional weight. All components tested without failure.”


SunLink Tracker

Updates strengthen the TechTrack design

SunLink’s single-axis tracker TechTrack is one of the quickest mounting systems to install, largely due to the simplicity of every component designed to eliminate inefficiencies and optimize energy production. The company is responding to the current environment, with customers looking for faster installation to keep up with their volume of solar projects and ultimately reduce field labor and associated installation costs, with some tweaks to its tracker design.


One change is a new bearing and pivot design that arrives on site preassembled. The new and improved bearing design provides enough room in the stabilizer stroke (SunLink active damper) so that the system no longer needs to be rotated. Instead, the stabilizer mount position can be set from a measurement, saving substantial installation time. And with the preassembled bearings, installation crews can immediately install the component, saving valuable time in avoiding additional assembly of multiple parts in the field.

An additional design benefit enables drop-in torque tubes, eliminating the requirement for specialized jack equipment. SunLink also improved the durability of its pivot and bearing to withstand the rigors of construction crew handling on the project site.

“Another way we’re is reducing installation time is by revisiting our slew arm,” says Kate Trono, SVP of product, SunLink. “With a more streamlined design, we’ve eliminated the need for multiple or expensive custom tools and install kits that can sometimes add another $10,000 to a project. Our redesigned slew arm can be installed with standard tools, reducing the number of components, labor time and additional expenses.”

Feature enhancements like these may seem like small improvements, but the pay-off is big when you consider the reduction in labor, installation time and reducing your overall solar project cost.

— Solar Builder magazine

Engineering Insight: Inside Solar FlexRack’s second generation tracker

solar flexrack

Amid the solar market’s mad dash to offer tracker solutions, Solar FlexRack has been taking its time. The company launched its first offering, the TDP Turnkey Tracker in early 2016, with the focus on a total solution. In contrast to competitors that were providing stand-alone solutions, Solar FlexRack offered a full services package coupled with its tracker to ensure project execution. The TDP carried a low total project cost by including full design, geotechnical analysis, installation, commissioning and support services bundled in one contract.

By the end of this year Solar FlexRack will have 2 GW installed and has built a reputation of taking care of its clients with a robust service offering. Solar FlexRack handles the installation on nearly 40 percent of the trackers it sells. All 50 installations of the first product are standing up and running, causing none of the wild tracker system failures that you may have seen captured on video around the world. On the contrary, Solar FlexRack has often been invited to those sites to fix prior mistakes.

“We’ve seen a lot of things out there,” says Steve Daniel, EVP of Sales and Marketing at Solar FlexRack says. “We’ve seen other trackers completely twisted in the wind and lying on the ground. We’ve seen a lot go wrong with bearing assemblies — a crucial component that attaches the posts to the torque tube. We’ve seen people undersize the torque tube, which leads to the torque tubes twisting when there is too much wind. We’ve seen modules completely blown off the tracker in wind events due to under design.”

The diligent and methodical philosophy continues with Solar FlexRack ready to debut its first self-powered tracker, TDP 2.0. Like a basketball player that makes a living off the fundamentals more so than risking highlight plays, the TDP 2.0 isn’t a flashy new concept, but one that rounds out the company’s offering for developers and EPCs in the utility-scale space in need of a reliable, full service solution. After building one as crooked as they could, to literally try and break it, and seeing it hold up, the fastidious engineering team felt confident in the offering.

“We’ve invested a lot in the engineering side and made a conscious decision to have that service offering. We’re extremely cautious on our tracker design and feel our approach has resulted in a solid offering which will last the required life cycle of the project specifications,” Daniel says.

What’s new about 2.0?

Solar tracking exists in order to harvest as much power from the sun on a site as possible, which means you shouldn’t lose sight of module density when selecting a tracking solution. This is top among the advantages of the Solar FlexRack TDP 2.0, which is only forfeiting 18 in. of space in a span of 90 modules for the module over the motor.

The first version of the TDP maxed out with 60 modules and a rotation of 90 degrees. The TDP 2.0 is a 90-module table with a 110 degree rotation. The TDP 2.0 achieves a balanced system similar to NEXTracker by having the slew drive higher than the axis of the actual torque tube.

The tracker control unit (TCU) is a proven solution that has been deployed in over 1 GW of its unit around the world. The self-powering starts with a small, 30-watt panel mounted above the motor to provide power to a lithium-iron battery.


Efficiencies in design cascade from there.

“Most trackers you run AC power coming into the field and don’t usually use parasitic power off the modules, so you run AC wire to every drive post in the array,” Daniel says. “With self-powered, you eliminate all of that and the switch gear you need to have come into the field. This decreases installation and BOS costs significantly. It does increase O&M costs a bit, but there’s more efficiency in installation and much less wiring.

Before the TCU on the TDP 2.0, you’d have one tracker control unit that serviced 4 tables, which meant you’d be running DC wiring from one TCU to the motors on the other three tables. Added together, that’s a decent chunk of DC wiring. The TDP 2.0 has one TCU per table mounted directly onto the torque tube under panels and next to the motor. This limits DC wiring to a 3 -ft whip cord from the TCU to the motor.

The next tweak was bumping the rotation up to +/- 55 degrees, which analysis shows is the optimal angle for capturing that morning and late day production and generating as much revenue as possible. Producing more power late in the afternoon is becoming more important, especially in California with the changing rate structure.

“We tried 60 degrees but realized it was such a sharp angle, we weren’t going to get much more energy yield out of that design. The 55 degrees is the most efficient,” Daniel says.

Still a market for version 1?

While the expectation is the TDP 2.0 product will be in demand, there is still a market for the original 60-panel version. The TDP 2.0 is more of a utility-scale space solution, so the original TDP might still be the better route for projects in the 1- to 5-MW range where the economics of a 90-panel array might not pencil out.

“For some, 60 works well,” Daniel explains. “Lot of farmers in Central Valley understand actuator motors and are comfortable with that design. It’s a nice solution in the small C&I DG space, and we don’t want to mess with that. We’re providing choices.”

“With a 1,000 volt system, the table sizes tend to be 18, 19, 20 and the math doesn’t work as well,” Daniel says. “The closer you get to 90 panels, the more efficient the design is because you’re amortizing the cost of the controller and motor over more panels. But if you have say 20 modules in a string, you can put four of those strings on the TDP 2.0, and only get to 80 modules. So you don’t get the efficiency of getting close to 90.”

The move to 1,500 volt business makes this step up to 2.0 imperative because the string sizes will be 27, 28, 29 or 30 usually, which translates to three strings of 81, 84, 87 or 90.

“I don’t think we lost deals by not having this, but it certainly opens up more of the market for us,” says Steve Daniel, EVP of Sales and Marketing for Solar FlexRack. “People are moving toward self-powered trackers in certain areas, mostly where the sun is reliable and it doesn’t get too cold.”

— Solar Builder magazine

Solar FlexRack trackers trending up, doubling sales over last year

Solar FlexRack on a Growth Trend_2018

Solar FlexRack reports that its solar tracker sales have doubled in the first half of the year over last year’s sales. Solar FlexRack is closing double-digit megawatt sales of their new TDP 2.0 Solar Tracker and has expanded their product lines to deliver more options for solar power plants’ performance. They are continuing their growth trend and expanding their products to better serve the distributed generation market. Solar FlexRack’s total product footprint has grown to over 1.8 gigawatts.

If you missed it, check out our July/August print issue for a deep dive into its latest self-powered tracker design. Or visit booth 9619 at Intersolar to see its latest solar racking solutions on display.

Key to solar plants’ performance is selecting the right racking product to meet site requirements and optimizing its energy production yield. From quality solar trackers, to racking, to a selection of foundation components, Solar FlexRack serves design engineers solar mounting performance choices. The product expansion has continued to contribute to the company’s success and boosted their sales.

“Solar FlexRack has expanded our product lines with solar tracker and fixed tilt solutions for conventional crystalline and thin film modules. We have also added a new compelling solar ground screw foundation solution to further enable our clients installing in rocky soil conditions. We understand companies need different mounting solutions for different geographies and climatic conditions,” said Steve Daniel, Executive Vice President of Solar FlexRack.

Solar FlexRack’s thin film solutions include TDP Solar Trackers and fixed tilt solutions for First Solar Series 4 and 6 and fixed tilt solutions for Solar Frontier. The latest solutions also include the Self Powered Solution for Solar FlexRack trackers. Each solution offers a different set of benefits to ensure that site will perform to plan.

— Solar Builder magazine

Award-winning solar site idea: Reducing one pound of steel per foot length of every pile

Texas solar site

Subtract one pound of steel per foot length from every pile used to support a solar photovoltaic panel, and you may save millions of pounds — and a lot of money. The idea, which involves changing the way photovoltaic ground mount piles are designed, came from a partnership between HDR structural engineer Steve Gartner and PACO Steel, and has earned recognition in the American Society for Civil Engineering Innovation Contest, taking home the Feasibility Award in the Innovative Business Model category.

The new design process involves using a fully automated electric resistance forge-welded process that lets engineers design custom-made piles with very little excess steel. Previously, the steel piles used for the ground mounts were designed by choosing from six standard hot-rolled sections in the American Institute of Steel Construction manual. Now, there are more than 2,000 options to choose from that meet project load demands and result in very little excess steel. The process is flexible enough to accommodate both PV tracker and PV fixed-tilt systems.

solar panel excerpt

The process has been proven effective on multiple pilot projects and studies. Steel weight savings on the projects ranged from 10 to 25 percent compared to the weight of standard hot-rolled steel pile sections. Photovoltaic facilities average 500 steel piles per megawatt, and projects with more than 100,000 steel piles are not uncommon. On the five pilot projects, steel tonnage was cut by from more than 200,000 to more than a million pounds.


Working together, the HDR and PACO Steel team pioneered the innovative process, which will allow solar farm owners to reinvest their cost savings into additional photovoltaic panels or other areas of the facility. The process may also make it possible for additional solar projects to move forward because budgetary concerns related to material costs are lessened.

— Solar Builder magazine