Inverter experts explain how to best calculate levelized cost of energy

APsystems

Photo courtesy of APsystems.

Levelized cost of energy (LCOE) is one of the most important metrics used for judging the value of a PV system. It is also less easily understood and seemingly open to interpretation. How am I really calculating this figure? What is sitting outside this calculation?

Ask five inverter companies, and you might get five answers. So, we asked them all to get all of the answers.

Factor for Failure

A recurring theme when calculating LCOE for a PV system is getting a full understanding of its potential for failure and its ability to mitigate those losses: How many components are there? How likely are they to fail? When and how often could they fail? How much production will be lost during those failures? How much work is involved in getting it running again? This means keeping in mind variables like inverter replacement cost, system engineering cost, interconnection updates (adoption of new codes) and re-inspection cost.

Fronius Diagram

Fig. 1: Courtesy of Fronius USA.

Fronius did a study, examining the costs associated with replacing or repairing inverters 15 to 20 years from the present to account for that full PV system cost of ownership. An example they gave: If the original system cost is $10,000 and the extended cost factor is 1.10, then the total cost of the system over its lifetime is $10,000 x 1.10 = $11,000. Within this study, its SnapInverter resulted in 1.05 cost factor, while a generic string inverter hit 1.19 and a microinverter hit 1.26. The important variable in this calculation was mean time between failure (MTBF), defined in this study as the failure rate during the intrinsic failure period (see Fig. 1).

“Since the industry has grown so rapidly in recent years, the majority of PV systems in the United States are less than five years old, with typical standard inverter warranties being five to 10 years in length,” says Brian Lydic, senior standards and technology engineer at Fronius. “The majority of inverters installed in the field are still under warranty, and the industry has not needed to address large numbers of inverter replacements or repairs due to end of lifetime, though this will become commonplace.”

Yaskawa – Solectria Solar notes the correlation between the number of components and a higher MTBF, which makes sense intuitively. This makes the MTBF discussion a big part of the operations and maintenance (O&M) and LCOE calculation.

“The capability to service your inverter efficiently and in the most effective manner is crucial to keeping uptime high and calculating LCOE,” says Danielle Kershner, channel sales representative, Yaskawa – Solectria Solar, which keeps component count low by integrating AC/DC disconnects and integrates modular power stages to minimizes time and cost for service. The company has also revamped its customer service department to reduce downtime.

Another way to look at this is operational expenditure (Opex). The question answered here is “How much value am I losing during downtime?” So, Opex would include equipment failure, maintenance, repairs, materials and labor lead-time, restructuring, capacity change and so on. This analysis can favor microinverters in certain applications as any failures will only affect small portions of a system in a single moment, versus the entire system in the case of a string inverter failure. As mentioned in our feature on service on page 20, web-based monitoring services can be crucial for improving timeliness and efficiency of O&M functions.

“Since downtime is tied to the loss of generation, this variable must not be taken lightly when trying to maximize the LCOE,” says Frank O’Young, associate VP for Darfon. “The LCOE may be lowered by as much as 20 percent if the system uses equipment that is easy to maintain, quick to troubleshoot and requires minimal repair time.”

Look at Lifetime

Establishing all of the variables that add and subtract from the economic value of a PV system is step one. Establishing a timeframe is step two. Is your LCOE calculation really looking at the broad picture?

“When you compare two systems with a calculated LCOE, be sure the warranties are equivalent because the cost to replace a major component like a string inverter can have a serious impact on that calculation, particularly when those needed replacements occur once, or often twice within a 25-year period,” says Jason Higginson, senior director of marketing, APsystems, which has 10- and 25-year warranty options for its microinverters.

Adjacent to the warranty is service recovery speed. Ed Heacox, GM of CPS America, a leading commercial inverter company, says a key for them is having ready-to-go spares or RMA inverters available. “We are offering service speed commitments as well as onsite spares to help customers reach nearly zero downtime. Innovation of these commercial programs is a big part of our work on LCOE for customers,” he says.

Pika Energy Diagram

Example of “future-proofing” an install with a Pika Energy inverter.

Max Efficiency

Enough of all of this failure talk. Most of the time the system is going to be on and working, and when it is, it needs to be kicking ass and improving LCOE.

“One of the potential drawbacks is that LCOE calculations do not effectively differentiate between upfront and variable costs,” says Peter Mathews, North American general manager for SolarEdge.

His example: The fixed cost of a system, including customer acquisition, permitting and design, are realized regardless of the size of the PV system. Each added module can be installed for a much smaller variable cost.

“The trade-off between fixed and variable costs is more advantageous for systems with more PV modules since they can generate a disproportionately greater amount of energy versus the initial upfront costs,” he says. “LCOE calculations are therefore only part of the financial return. The calculation for return on investment (ROI) should also factor in the revenue generating potential of any site to generate cash from the PV system. The LCOE only calculates the expense. The returns can also vary based on region, rate structure or the ability to switch rate structures. Having a highly flexible PV solution that can add more modules onto projects is a powerful tool in maximizing the return on PV projects.

SolarEdge’s philosophy is to allow for the installation of modules in shaded areas and on roofs with varying angles. This degree of design flexibility means more modules per roof.

Marv Dargatz with HiQ Solar recommends stacking string powers high enough to maximize ROI while the system is up and humming. To do this right, he cautions to be wary of STC ratings.

“STC ratings for modules tend to be optimistic, partly because they are measured with a cell temperature of 25° C. In the real world, cell temperatures in direct sunlight are more likely to be at 60 or 70° C, yielding less power,” he says. “Overall, when orientation to the sun, temperature, time of year, soiling and aging are taken into account, strings put out a lot less power than STC leads you to expect. It’s therefore important to stack the inverter to make sure it is operating as near to its max output as possible to maximize ROI.”

He also says having a single MPPT per string rather than paralleling helps maximize harvest.

RELATED: How to achieve low LCOE utility-scale solar without cutting costs 

Seriously, Really Look at Lifetime

Pinpointing the lifetime of a system at 25 years from 2017 puts you into 2042. We did the math three times just because that number looks insane. We might all be in an Escape from New York post-apocalyptic future, but those PV systems will still be kicking, and one has to assume energy storage is going to be in a completely different position than it is now. And assuming that, you must assume your customers are going to want to move to upgrade to solar+storage, if they haven’t already, which throws all of your previous LCOE forecasting out the window of your 2042 flying car.

So yes, understanding cost and performance metrics for batteries is an important factor to consider today. Batteries introduce multiple new variables into the financial model and can have a positive or negative impact on LCOE depending on the technology used and how it is sized relative to the PV array and loads.

“A battery has both an instantaneous power rating [in watts or kilowatts] and an energy capacity rating [in kilowatt-hours] and they both factor into the financial model,” says Paul Dailey, director of product management, OutBack Power. “In addition, battery life is often expressed either in cycles or calendar life, but you need both metrics to determine the value of the battery in your application over time.”

The future of energy storage is why Chip Means, director of sales development, Pika Energy, says DC voltage is by far the most underrated and under-appreciated variable in LCOE.

“Too many solar inverter products use a low voltage range, typically 48 volts. Solar is rapidly changing to require the addition of battery storage behind the meter. Using 48-volt equipment simply doesn’t make sense for this evolving reality,” he says. “Low-voltage inverters are typically AC-coupled to add a battery to grid-tied solar, which requires using two inverters. This clunky, 48-volt arrangement means the customer’s roundtrip efficiency will be typically around 80 percent.”

Pika Energy’s products use an internal bus voltage of nominally 380 Vdc, and all of its components — PV Link solar optimizers, Islanding Inverters and Pika-compatible smart batteries — use this bus voltage to connect, communicate and transmit power. This results in a system with roundtrip efficiency of closer to 90-92 percent. That 12 percent increase on roundtrip efficiency pays major dividends in terms of LCOE.

Magnum Energy’s MicroGT inverter also comes ready to talk to the MS-PAE inverter/charger, to ease that solar-plus-storage transition.

“Installing storage-ready PV systems now will save significant time and resources when returning in the near future to add energy storage,” says Mike Dixon, sales and marketing director, Magnum Energy. “Not only considering current equipment investments, but future equipment investment — which doesn’t fall under the O&M umbrella — can save on the most expensive part of the solar formula.”

Unless all of these lifetime costs and realistic max output calculations are included and explained clearly to customers, a backlash will occur once they are surprised by replacement costs or any other unforeseen variable. And no one wants a line of customers wielding lightsabers outside their door in 2042, demanding satisfaction. 

This feature is from our March/April “Inverter Issue.” Get your FREE subscription to print here or digital versions here.

— Solar Builder magazine

SolarEdge debuts complete residential solar solution in Europe

SolarEdge Technologies is rolling out its new complete residential solution throughout Europe. Combining PV inverter, storage and home automation, the complete residential solution manages and monitors solar energy generation, electricity consumption, energy storage, and device control that enables homeowners to increase self-consumption and energy independence.

solaredge hd wave inverter“SolarEdge is committed to making PV more accessible throughout Europe by providing innovative products that offer greater value. Homeowners that use solar energy can lower household expenses by reducing their electricity bills,” stated Alfred Karlstetter, General Manager of SolarEdge Europe. “Our new residential offering covers a wide variety of homeowner needs that range from increased production and maximizing self-consumption to home automation.”

So, what’s involved in this solution? SolarEdge is showcasing its HD-Wave single-phase inverter, as well as its StorEdge solution, device control suite, and its new three-phase residential inverter. StorEdge-ready and supporting device control, SolarEdge’s HD-Wave inverter topology is record breaking for its 99% weighted efficiency. It is a power-packed inverter that is dramatically smaller and lighter than standard inverters.

RELATED: Q&A with SolarEdge about new StorEdge storage system 

Compatible with leading battery solutions, Tesla’s Powerwall and LG Chem, SolarEdge’s StorEdge solution allows home owners to maximize self-consumption and energy independence by managing and monitoring energy production, consumption, and storage. SolarEdge’s device control suite shifts consumption to meet PV production patterns and includes a plug-in socket with metering, switch with metering, dry contact switch, and an immersion heater controller. Also included in the rollout are SolarEdge’s new three-phase inverters, which are lighter, quieter, smaller and more efficient.

SolarEdge will be presenting its new residential portfolio at Energiesparmesse in Wels, Austria; BePositive in Lyons, France; and Solar Solutions in the Netherlands. SolarEdge has also launched an EU-wide roadshow that showcases its newest innovative solutions and services for domestic and commercial PV systems. With more than 1,000 installers already registered, the roadshow includes 38 locations, spanning Germany, Austria, Switzerland, UK, Italy, and France. The new portfolio will also be presented in SolarEdge’s truck roadshow in Benelux in cooperation with Esdec, a leading supplier in mounting systems in the Netherlands.

— Solar Builder magazine

PV Pointer: How inverter advancement is leading the way for the solar industry

For the past decade, the solar energy industry has been focused on reaching grid parity, which occurs when solar energy generates power at a Levelized Cost of Electricity (LCOE) equal to the price of purchasing power from the grid. In many regions around the world and in some states in the U.S., we have already reached and surpassed grid parity. This does not mean that the race towards a lower LCOE has stopped. In fact, the industry is now competing against itself in order to provide more advanced and efficient solar energy solutions. As inverters have a significant impact on LCOE, we believe that a key to driving the advancement of the solar industry is inverter innovation.

Advancements in MLPE

advanced inverters

We can see the impact of inverter innovation by looking back at the past few years in which a number of new inverter technologies were introduced that helped to advance the PV market. One particularly important innovation was the introduction of module-level power electronics (MLPE) to inverter topology. By moving functionality to the panel level, this distributed inverter topology unlocked new value that was not previously accessible, such as more energy, high-resolution monitoring, design flexibility, and enhanced safety.

In fact, this inverter advancement has even been called a potential disruptive technology for the PV industry due to its ability to offer value and improve the LCOE of systems. If the past few years are any indication of the future advancement of the PV industry, then the inverter can continue to drive the PV industry forward.

RELATED: Module-Level Electronics O&M Equation: Looking at the solutions to address MLPE issues 

Inside the brain

There are many reasons why the inverter is key to this continued advancement, but the central reason is that the inverter acts as the brain of the system. As the PV system brain, the inverter is responsible for maximizing energy production, smart grid interaction, safety functions, monitoring, storage, smart homes, and more. This means that when inverter technology advances, it not only improves the inverter itself, but it also has the potential to impact all of the other additional functionalities it manages. In comparison, when improvements are made in another component, such as, a panel, the impact of this improvement is typically limited and may not necessarily affect other components in the system. Because inverter progress can help to advance the entire PV system, its improvement is strategic to the PV industry.

RELATED: How the cell-optimizer, string inverter combo could change PV systems 

Shift to digitization

As the functionality of inverters is expanding, inverters are simultaneously shifting towards digitization. This means that more of the DC to AC conversion processes is happening electronically versus mechanically. By entering the digital age, inverters have a faster trajectory for advancement and can now follow in the footsteps of other technological trends such as, smartphones, computers, and televisions.

SolarEdge HDwave inverterSolarEdge has made significant progress in digitizing inverter functionality with its HD-Wave inverter. Not only has this had the immediate effect of increasing efficiency and power density of the inverter, but it will also allow the pace of inverter advancement to significantly increase compared to what we witnessed over the past 20 years.

This means that the responsibility for improving PV systems, mainly comes down to the inverter. So, the question remains, what is the industry doing in order to continue advancing the inverter?

First of all, the regulatory organizations are placing additional demands on the inverter that manufacturers need to meet. Some examples include new safety regulations NEC 2017, revenue grade metering, and smart inverter standards.

From the demand side, homeowners and installers are requiring that inverters provide more value, such as monitoring, efficiency, reliability, building energy automation, and more. Lastly and most importantly, inverter manufacturers, like SolarEdge, are focusing their efforts on providing more innovative solutions to gain a competitive advantage in the market. This healthy competition will allow the inverter to continue to help PV proliferation around the world.

Lior Handelsman is VP of Marketing and Product Strategy, Founder, SolarEdge

— Solar Builder magazine

One of SolarEdge’s new commercial power optimizers can connect two modules

SolarEdge is launching its highest wattage power optimizer – the P800 – which expands its commercial power optimizer offering. Installers can now connect even higher wattage modules in a 2-to-1 configuration in commercial projects, thus reducing installation time on the roof, lowering part count, and increasing system energy production.

solaredge commercial optimizer

Commercial Power Optimizer – P800

The P800 commercial power optimizer enables installers to connect two modules to one power optimizer. It is available in two versions: P800s for series connections (for high power 6” cell modules and bi-facial modules) and P800p for parallel connections (for high power 5” cell modules).

The parallel version (P800P-5NCDARL) has a built-in branch cable to eliminate the need for an external cable. A single input version of the P800p (P800P-5NC4ARL) is also available and should be used when connecting a single module to the optimizer (in cases of an odd number of modules in the string). This ensures there are no unused inputs exposed to outdoor conditions.

RELATED: Module-Level Electronics O&M Equation: Looking at the solutions to address MLPE issues 

System Design

The P800 power optimizers are compatible with all SolarEdge three-phase inverters. These power optimizers have an increased maximum output current of 18A, enabling the connection of longer strings:

• When connecting to 208Vac inverters: up to 7.2kWp per string
• When connecting to 480Vac inverters: up to 15.3kWp per string

The SolarEdge Site Designer can be used for recommended designs and to verify system sizing. Some 208Vac designs can have limitations and we recommend the use of the SolarEdge Site Designer.

— Solar Builder magazine

SolarEdge debuts new communications, management MLE monitoring kit

Looking for a new advanced communications and management accessory to enhance module-level monitoring and improve O&M operations for that special person in your life this Christmas? SolarEdge Technologies may have just the stocking stuffer with its latest product launch.

SolarEdge

Meet the GSM Cellular Kit

In an effort to speed up installation times and to simplify the setup of solar monitoring connections, SolarEdge introduces its GSM Cellular Kit for wireless communication. The GSM cellular kit is ideal for locations without broadband infrastructure. With the GSM cellular kit, installers receive a GSM network card combined with a preinstalled SIM card covered by a standard 12-year hardware warranty and a 5 or 12-year data plan.

The Kit can be used in combination with any single-phase SolarEdge inverter, including SolarEdge’s StorEdge solutions to provide online battery monitoring and the SolarEdge revenue-grade inverters to provide an end-to-end revenue metering solution.

RELATED: Module-Level Electronics O&M Equation: Looking at the solutions to address MLPE issues 

solaredge advanced inverter

New electricity meter

SolarEdge is also launching a new electricity meter to offer system owners more insight into energy usage with consumption monitoring. The SolarEdge electricity meter supports consumption monitoring, on-grid applications and grid export limitations.

Information from the meter can be displayed on SolarEdge’s cloud-based monitoring platform and smartphone applications. The electricity meter can be used with any SolarEdge single phase inverter solution and is compatible with StorEdge inverters for on-grid storage applications.

“SolarEdge helped lead the revolution of cloud-based, module-level monitoring for improved PV asset management,” stated Peter Mathews, North America General Manager for SolarEdge. “SolarEdge is proud to take a leadership position in continuing to advance insights into PV production, consumption, and storage by offering innovative and cost-effective solutions, such as our new electricity meter and GSM Cellular Kit.”
SolarEdge is currently taking orders for its electricity meter and GSM Cellular Kit.

— Solar Builder magazine